A Note on Cyclotomic Euler Systems and the Double Complex Method

نویسندگان

  • GREG W. ANDERSON
  • YI OUYANG
چکیده

Let F be a finite real abelian extension of Q. Let M be an odd positive integer. For every squarefree positive integer r the prime factors of which are congruent to 1 modulo M and split completely in F, the corresponding Kolyvagin class κr ∈ F×/F×M satisfies a remarkable and crucial recursion which for each prime number l dividing r determines the order of vanishing of κr at each place of F above l in terms of κr/l. In this note we give the recursion a new and universal interpretation with the help of the double complex method introduced by Anderson and further developed by Das and Ouyang. Namely, we show that the recursion satisfied by Kolyvagin classes is the specialization of a universal recursion independent of F satisfied by universal Kolyvagin classes in the group cohomology of the universal ordinary distribution à la Kubert tensored with Z/MZ. Further, we show by a method involving a variant of the diagonal shift operation introduced by Das that certain group cohomology classes belonging (up to sign) to a basis previously constructed by Ouyang also satisfy the universal recursion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Response of the Coupled Vehicle-Floating Slab Track System using Finite Element Method

In present study, a mathematical model of the vehicle–floating slab track (FST) interaction is established to investigate the coupled behaviour of vehicle–track system. The FST is modelled as the double Euler -Bernoulli beam including the rail and slab. The railway vehicle is simplified as a multi-rigid-body model. The wheel–rail interface is treated using a nonlinear Hertzian contact model, co...

متن کامل

Effects of Directional Subdividing on adaptive Grid-Embedding (RESEARCH NOTE)

The effects of using both directions and directional subdividing on adaptive gridembedding on the computational time and the number of grid points required for the same accuracy are considered. Directional subdividing is used from the beginning of the adaptation procedure without any restriction. To avoid the complication of unstructured grid, the semi-structured grid was used. It is used to so...

متن کامل

Flow-Induced Instability Smart Control of Elastically Coupled Double-Nanotube-Systems

Flow induced vibration and smart control of elastically coupled double-nanotube-systems (CDNTSs) are investigated based on Eringen’s nonlocal elasticity theory and Euler-Bernoulli beam model. The CDNTS is considered to be composed of Carbon Nanotube (CNT) and Boron-Nitride Nanotube (BNNT) which are attached by Pasternak media. The BNNT is subjected to an applied voltage in the axial direction w...

متن کامل

Cyclotomic Units and the Iwasawa Main Conjecture

In these notes, we follow the proof in [1] of the main conjecture of Iwasawa theory making heavy use of the Euler system of cyclotomic units. On the one hand, using the local theory of Coleman series and ideas of Iwasawa one obtains a connection with the p-adic zeta function. On the other hand by CFT and Rubin’s refinement of the ideas of Kolyvagin (and the analytic class number formula) one ob...

متن کامل

Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials

Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002